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Abstract: A home-made near-infrared laser tweezers Raman spectroscopy (LTRS) system 
was applied to detect hemoglobin variation in red blood cells (RBCs) from diabetes without 
exogenous labeling. Results showed significant spectral differences existed between the 
diabetic and normal RBCs, including the peaks dominated by protein components (e.g. 
1003 cm−1) and heme groups (e.g. 753 cm−1) in RBCs, and accurate classification results for 
diabetes detection were obtained by linear discriminant analysis with 100% sensitivity (i.e. no 
false negatives in the study). This work indicated the great promise of LTRS as a label-free 
RBC analytical tool for improving the accurate detection of type II diabetes. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction
Diabetes has become an important public health problem recently with an estimated 422 
million adults living with it in the world [1]. Sadly, diabetes caused almost 1.5 million deaths 
globally within one year [1, 2]. Type II diabetes (i.e. the non-insulin-dependent diabetes) 
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accounts for the majority (nearly 85%) of people with diabetes worldwide [3]. In addition, the 
symptoms of type II diabetes are often less marked or absent [1]. So the disease may go 
undiagnosed for years, until complications (e.g. heart attack, kidney failure, nerve damage 
and so on) have already arisen, which increases the overall risk of dying prematurely [1]. 
Early diagnosis plays an important role in decreasing the complications and increasing patient 
survival. Nowadays, the tests of glycated hemoglobin (HbA1c) and blood glucose are regular 
methods for diabetes detection [4]. Especially, HbA1c, which is formed by the nonenzymatic 
glycation of hemoglobin exposed to high blood glucose, is significantly correlated with the 
average glucose level in the preceding 3 months period (life span of the RBCs) [5, 6]. 
Compared with glucose test, HbA1c test has several advantages, such as low intraindividual 
variation and no demand for fasting [4], which make it is increasingly accepted as clinically 
stable and reliable index for type II diabetes screening. 

Currently, HbA1c test is conducted by assay techniques, including immunoassay, 
boronated affinity chromatography (BAC), high performance liquid chromatography (HPLC) 
and so on [7, 8]. However, these methods have certain inadequacies, such as the long time for 
the analysis, the complicated operation for cell lysis and antibody-based labeling, and the 
need for invasive exogenous reagent and big sample volume [8]. Considering hemoglobin is 
the major contents of RBC, development of a convenient, label-free and micro-sample 
screening technique via direct RBC analysis would be of great clinical value for type II 
diabetes identification. 

Laser tweezers Raman spectroscopy (LTRS), which combines laser tweezers technique 
and Raman detection, enables the capture, manipulation, and biomolecular fingerprinting of 
individual live cell without exogenous labeling of the sample [9]. Briefly, an optical trap (i.e. 
laser tweezers) formed by a focused laser beam is used to capture a cell without disrupting its 
biological activity. Then the Raman spectrum is obtained simultaneously by the same laser, 
providing structure and composition information at the molecular level [10]. To date, many 
studies have demonstrated the applications of LTRS for RBC detection in biomedical field 
[10–12]. However, LTRS for the detection of RBCs variation in diabetes progression has not 
been reported. 

The main focus of this article is to evaluate the potential of applying LTRS technique for 
label-free analysis of RBC samples belonging to diabetic and normal subjects for type II 
diabetes determination. The principal component analysis and linear discriminant analysis 
(PCA-LDA) multivariate methods are utilized to analyze and discriminate the RBCs spectra 
acquired from the two groups. This primary study may develop a reagent-free and reliable 
method for type II diabetes screening, which can be performed on micro-sample volume with 
the need for little or no sample preparation. 

2. Materials and methods 

2.1 Samples collection and preparation 
Table 1. Clinical Information on Type II Diabetes and Healthy Volunteers 

 Type II Diabetes (n = 45) Healthy Volunteers (n = 45) 
Age   

Mean 53 ± 9 46 ± 16 
Gender   

Male 19 22 
Femal 26 23 

Clinical examination   
HbA1c value 6.6~12.8% < 6.5% 

Fasting plasma glucose 7.8~13.8 mmol/L < 7.0 mmol/ L 

In this study, totally 90 blood samples were drawn from two subject groups: one with clinical 

diagnosis of type II diabetes (HbA1c value  6.5% and on medication, n = 45) and the other 

consisted of healthy volunteers (n = 45). The detailed information on subjects can be found in 
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Table 1. In the study, 90 blood samples (45 diabetic and 45 healthy) were divided into a 
calibration set (35 diabetic and 35 healthy) and a validation set (10 diabetic and 10 healthy) 
for statistical analysis. All blood samples were from the First Hospital of Fuzhou, and the 
research was approved by the ethical committee in the hospital. For preparation of RBCs 
samples, the whole blood samples were centrifuged to remove white cells and other 
impurities. To purify the RBCs, the cells were washed with 0.9% physiological saline and 
were diluted with it. At last, 2 ml aliquot of the diluted RBCs suspension liquid was pipetted 
into a quartz-bottom culture dish which was placed on the LTRS microscope platform for 
single-RBC detection. For each sample, at least 10 RBCs were analyzed and averaged to 
obtain each data point. To emphasize the low intraindividual variability of RBCs, we 
randomly divided 20 RBCs' spectra from a blood sample into two groups on average. 
Obviously, there are not significant different (p<0.05) peaks between the two group, 
indicating intraindividual variability of RBCs from the same blood sample is low. 

2.2 Experimental set-up 

 

Fig. 1. Principle of our home-made near-infrared LTRS system, in which a 785 nm laser beam 
is focusd into an optically trap for capturing cell and is simultaneously used to obtain Raman 
spectrum of the trapped cell. Abbreviation: M-mirror; L-lens; PH-pinhole; DM-dichroic 
mirror; NF-notch filter; OIO-oil immersion objective; RBC-red blood cell; Hb-hemoglobin. 

A home-made near-infrared laser tweezers Raman spectroscopy (LTRS) system was 
employed for this study. Figure 1 showed the schematic illustration of the system. In detail, 
the diode laser beam at 785 nm was firstly passed through a telescopic system (comprised of 
lenses L1, L2, and 10 um pinhole) to obtain a circular beam with approximately 6 mm 
diameter. Then after being spectrally filtered by a band pass filter, the laser beam was 
delivered into an oil immersion objective (100 × , 1.30 numerical aperture) equipped in an 
inverted Olympus microscope system (IX71; USA) to be focused as a single-beam optical 
trap above the sample holder. In particular, the sample holder is a self-modified culture dish 
with a drilled hole sealed by a 80 μm thick quartz slide at the center. By moving the manual 
stage, one RBC in the aqueous solution could be isolated and immobilized within the beam 
focus at 20 μm height above the quartz slide. For real-time monitoring, the RBC was 
illuminated by a white light which imaged the cell (inserted pictures in Fig. 1) on a video 
camera system through a dichroic mirror (DM2 in Fig. 1). Here, the DM2 can reflect near-
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infrared radiation and be transparent to visible radiation. At the same time, the same laser also 
served as the excitation source for obtaining Raman spectrum of the trapped RBC. The 
benefit of choosing 785 nm as the Raman excitation light is that near-infrared region can 
weaken photo-damage to the trapped cell and can efficiently suppress fluorescence 
background, and is widely employed for blood component analysis in biomedical field [13–
15]. The backscattering photons from the trapped RBC passed along the same optical 
pathway and were filtered through the dichroic mirror (DM1 in Fig. 1) which would reflect 
785 nm radiation and be transparent to scattering radiation. Ultimately, the Raman scattering 
photons purified by holographic notch filter were collected and transmitted to a spectrograph 
(Holospec-f/2.2-NIR, Kaiser) coupled to a charge-coupled device detector (1024 × 256 pixels, 
Princeton Instruments) using a 50 μm diameter single-fiber. Here, the single-fiber is 
equivalent to a 50 μm pinhole, enabling the elimination of stray light to a great extent. In the 
study, LTRS system was calibrated by a silicon wafer at 520 cm−1 band, and the Raman 
spectra were acquired from 420 to 1700 cm −1 region with 5 mW laser power and 40 s 
integration time. Raw spectral data were preprocessed with a fifth-order multi-polynomial 
fitting algorithm [16] to remove the fluorescence background. After fitting, each Raman 
spectrum was normalized or scaled by dividing by the integrated area under the curve in the 
spectral range of 420-1700 cm−1 by Origin Pro 8.0 software package. By this way, the 
absolute intensity of spectral bands was replaced with relative intensity (i.e. percentage 
signals intensity); thus, the absolute intensity variations from possible laser fluctuations can 
be reduced, promoting a better comparison of spectral patterns and percentage signal of 
various Raman bands between diabetic and normal RBCs samples [17]. 

3. Results and discussion 

3.1 Raman spectra 

 

Fig. 2. (a) Red and blue curves: the average Raman spectra of type II diabetic (red curve) and 
normal (blue curve) RBCs; Green curve: the difference spectrum (diabetic minus normal). 
Black curves: the 1st and 2nd principal components (PC1 and PC2), respectively, which are 
most diagnostically significant for diabetes detection (scaled by a factor 0.1). (b) Structural 
schematic of the hemoglobin in the red blood cell. RBC-red blood cell; Hb-hemoglobin. 
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Fig. 3. The mean intensities and standard deviations of the RBC Raman bands with major 
variations (p<0.05) from normal to diabetic. 

Table 2. The spectral assignments for RBC. 

Raman shift (cm−1) Assignment a,b 

490 p: S-S str 

567 ν(Fe-O) 

679 δ(pyr deform) sym 

753 ν(pyr breathing) 

1003 Phenylalanine 

1129 ν(Cβ-methyl) 

1212 δ(CmH) 

1312 ν21, δ(CmH) 

1341 ν(pyr half-ring)sym 

1449 p: δ(CH2/CH3) 

1558 ν(CβCβ) 

1622 ν(C = C)vinyl, ν(Ca = Cb) 

a Notes: ν, stretch; δ, bend/scissor; sym, symmetric; p: protein; 
pyr, porphyrin; 
b Assignments taken from References [11, 15, 18–21]. 

Figure 2(a) showed the normalized average Raman spectra of the 35 type II diabetic (red 
curve) and 35 normal (blue curve) RBCs in training set. The average spectra exhibited 
prominent characteristic of RBCs at 490, 567, 679, 753, 1003, 1129, 1212, 1312, 1341, 1449, 
1558, and 1622 cm−1. The spectral assignments were listed in Table 2, according to the 
previous research [11, 15, 18–21]. The spectra contained most information related to the 
porphyrin macrocycles and various protein components of hemoglobin which is the major 
contents of RBCs (one RBC contains ~2.5 × 108 hemoglobin molecules). As shown in Fig. 
2(b), hemoglobin is a tetramer made of four heme groups attached with their respective 
globin chain (two α-like chains and two β-like chains) [18]. For each heme, there is one Fe 
ion which serves as O2-binding site in the center of the porphyrin rings [13]. To highlight the 
spectral differences between the two groups, the difference spectrum (green curve, diabetic 
minus normal) was shown in Fig. 2(a). The major variations (p<0.05) from normal to diabetic 
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were the increased Raman intensities at 679 (porphyrin symmetric deformation mode), 753 
(porphyrin breathing vibration mode), 1003 (Phenylalanine), 1129 (Cβ-methyl stretching 
mode), 1558 (CβCβ stretching mode) and 1622 cm−1 (C = C vinyl and Ca = Cb stretching 
mode), and the decreased ones at 490 (S-S stretching mode) and 1212 cm−1(CmH bending 
mode). Figure 3 is a plot of the intensity values of these different peaks and their mean values 
with associated standard deviations. These variations showed the constituent and 
conformational changes of hemoglobin in RBC after exposed to high blood glucose for a long 
period of time. For instance, the higher spectral intensity of phenylalanine (at 1003 cm−1) for 
the diabetes suggested there was an increase of phenylalanine content relative to the total 
Raman-active components in diabetic RBCs, which was in accordance with our previous 
study on serum albumin of diabetic patients [22]. Besides, many studies also have reported 
that the phenylalanine band would change when people in an abnormal medical condition 
[23–25]. The band at 753 cm−1 (porphyrin breathing mode), which is the direct indicator of 
heme status in RBCs [13], exhibits higher signal in diabetes, indicating the enhancement of 
porphyrin breathing mode in diabetic RBCs. The reason for this enhancement may be 
ascribed to the change of oxidation environment in RBCs considering the vibration is 
sensitive to oxygen [15]. Similarly, the decreased band at 1212 cm−1 and the increased bands 
at 1558 and 1622 cm−1, which are the marker for oxygenation, also indicates the difference of 
oxygenation state between diabetic and normal RBCs. Two possible mechanisms for the 
dissimilarity of oxygenation state were proposed: one may be the peroxidation and free 
radical reaction in high concentration of blood glucose [26]; the other may be the different 
oxygenation response of diabetic and normal RBCs to an applied mechanical force imposed 
by the optical trap [10, 27]. However, considering oxygenation state of hemoglobin may be 
interfered by some external factor (e.g. the time for blood extraction and the dissolved oxygen 
in the diluted solution), more rigidly controlled experiments for taking samples and testing 
need to be carried out to further clarify the oxygenation-induced effects on diabetic RBC 
Raman spectra in our future study. In addition, it needs to be pointed out that these variations 
in the spectral intensities were basically consistent with our previous study on using Raman 
spectroscopy to directly analyze human hemoglobin isolated from diabetic and normal RBCs 
[21]. Furthermore, Barman group also observed these subtle but discernible spectral shape 
differences in their research on Raman spectroscopy-based sensitive and specific detection of 
glycated hemoglobin (purely commercial sample) [7]. Thus, as explained by Barman group 
[7], these spectral variation may be also ascribed to structural changes in hemoglobin related 
to the binding of a glucose moiety (i.e. nonenzymatic glycosylation of hemoglobin [6]). So 
these reproducible variations in Raman spectra between normal and diabetic RBCs suggested 
the potential of the LTRS for rapid and efficient detection of type II diabetes. 

3.2 PCA-LDA statistical analysis 

In order to efficiently utilize finite spectral differences between diabetic and normal groups 
for diabetes detection, PCA-LDA statistical algorithm was implemented on the measured 
Raman spectra by SPSS 15.0 software package (SPSS Inc. Chicago). As a powerful spectral 
analytical tool, this algorithm has been universally employed to promote the efficiency of 
Raman spectroscopy for disease diagnosis [28–32]. In present work, principal component 
analysis (PCA), a dimensional-reduction technique by transforming complex data variables to 
a minimal set of orthogonal variables called principal components (PCs) that explained the 
maximum data variance, was firstly used to the raw spectral data (420-1700 cm−1) to generate 
a few PCs, followed by independent-sample T test [33]. Results showed that two PCs (PC1 
and PC2) were diagnostically significant for distinguishing diabetic from normal RBCs using 
the definition of p <0.05 [34]. Black Curves in Fig. 2(a) are the loading plots of PC1 and PC2. 
It was clear that PC1 and PC2 shared most spectral bands in the difference spectrum (green 
curve in Fig. 2(a)), including 490, 679, 753, 1003, 1129, 1212, 1558, and 1622 cm−1, which 
were diagnostically relevant spectral bands. Then, these two most significant PC scores (PC1 
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and PC2) were loaded into the linear discriminant analysis (LDA) algorithm which could 
maximize the ratio of between-class variance to within-class variance in a data set to figure 
out the discriminant equation that best distinguish the diabetic RBCs from the normal ones 
[35]. The discriminant equation was as follows: 

 1.135PC1 0.661PC2 0.045 0− − =   
To self-test the performance of the diagnostic model (i.e., the calibration stage), the 

discriminant equation was retrospectively put into use in the calibration set (35 diabetic and 
35 normal). Figure 4(a) showed the corresponding PCA scatter plot of the calibration data set 
(PC1 and PC2 are the x-axes and y-axes, respectively). Obviously, the diabetic (red circle) 
and normal data sets (blue circle) were largely clustered into two separate regions, which 
suggested that the RBCs Raman spectra were able to discriminate diabetic from normal 
group. Discrimination results (in Fig. 4(b)) showed that the sensitivity and specificity of the 
calibration model for diabetes detection were 100% (35/35) and 97.1% (34/35), respectively. 
The derived receiver operating characteristic (ROC) curve (in Fig. 4(c)), which is the plot of 
tests’ sensitivities versus their false-positive rates for all possible threshold levels [36], is 
another measure of the model’s ability for diabetes detection. The area under the ROC is 
positively related with the discriminant accuracy [36]. Here, the area under the ROC was 
0.999, fairly close to 1, implying a relatively ideal calibration model. 

In a prospective application study using the diagnostic model (i.e., the validation stage), 
double-blind test was performed on the additional 10 diabetic and 10 normal subjects in 
validation data set. After loading spectral data into the above diagnostic model, agreements 
with clinical diagnosis were reached for 10 out of 10 diabetic and 9 out of 10 normal samples, 
corresponding to 100% sensitivity and 90% specificity (shown in Fig. 4(d), 4(e)). Besides, the 
area under the ROC curve was 1.00 (in Fig. 4(f)). These discrimination results were 
summarized in Table 3. This work indicated the promising potential of LTRS as a label-free 
analytical tool for the functional, structural analysis of individual RBC for promoting the 
accurate detection of type II diabetes based on micro-sample volume. 

Table 3. Discrimination results of the calibration and validation data set for diabetes 
detection using RBCs LTRS combined with PCA-LDA 

Data sets Selected PCs Sensitivity (%) Specificity (%) ROC areas  

Calibration group PC1 and PC2 100 (35/35) 97.1 (34/35) 0.999  

Validation group PC1 and PC2 100 (10/10) 90 (9/10) 1.00  
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Fig. 4. Statistical analysis for the calibration data set (35 diabetic and 35 healthy samples): (a) 
PCA plots of the RBCs Raman data belonging to the type II diabetic group (red circle) and the 
healthy group (blue circle). (b) Scatter plots of the LDA scores, drawing the sensitivity of 
100% (35/35) and specificity of 97.1% (34/35) for diabetes detection. (c) The derived receiver 
operating characteristic (ROC) curve, yielding the integrated area of 0.999. Statistical results 
for the validation data set (10 diabetic and 10 healthy samples): (d) PCA plots of the RBCs 
Raman data belonging to the type II diabetic group (red circle) and the healthy group (blue 
circle). (e) Scatter plots of the LDA scores, drawing the sensitivity of 100% (10/10) and 
specificity of 90% (9/10) for diabetes detection. (f) The integrated area under the ROC curves 
is 1.00. 

4. Conclusion
In conclusion, a self-built near-infrared laser tweezers Raman spectroscopy (LTRS) system 
was applied to analyze single living RBC on the micro-sample from type II diabetic and 
healthy subjects without disrupting its biological activity. Upon analyzing RBC Raman 
spectra of the two groups, the changes in proteinous components and heme’s oxygenation 
state of hemoglobin in diabetic RBCs were found. By statistically treating with PCA-LDA, 
RBC Raman spectra gave out an accurate discrimination result for diabetes detection with a 
sensitivity of 100%, indicating the great potential of LTRS as a label-free and sensitive 
analytical tool for the functional, structural analysis of individual RBC for promoting the 
accurate detection of type II diabetes based on micro-sample volume. Meanwhile, considering 
the long-term condition for diabetes which needs frequent detection, our proposed method 
based on micro-sample volume with little need or no sample preparation, may be more 
convenient, comfortable, and humanity for diabetes detection. Next step, we will focus on 
measuring more Raman spectra from more diabetic and normal RBC specimens to further 
verify the reliability of this new detection method for clinical application. 
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